TB607

Die Periodendauer von 50 μs entspricht einer Frequenz von

Lösung:

20 kHz.

Die Frage lautet eigentlich :

Wenn 1 Hz = 50 Mikrosekunden "lang" ist, passen wieviel Hertz in eine Sekunde?

$$f = \frac{1}{t(sec)}$$
 $t = \frac{1}{f(Hz)}$

f = Frequenz in Hertz; t = Zeit in sec.

	0,		Milli			Mikro		Nano		Piko				
Γ							5	0						
	0	,	0	0	0	0	5							

Linke Formel verwenden

Taschenrechner
> Eingaben
= Ausgabe

$$t =$$
> 0,000 05 s
= 0,000 05 s

 $f = 1/t$
> 0,000 05 [1/x]
= 20 000 Hz (1/x Taste)

 $f =$
= 20 000 Hz
= 20 kHz.